Neuronske mreže su točne i stabilne samo u ograničenim scenarijima

Nova studija otkriva da algoritam možda neće moći izračunati stabilnu, točnu neuronsku mrežu za određeni problem bez obzira na količinu i točnost prikupljenih podataka

Mladen Smrekar srijeda, 20. travnja 2022. u 19:05

U umjetnim neuronskim mrežama komponente nazvane "neuroni" dobivaju podatke i surađuju u rješavanju problema, poput prepoznavanje slika. S vremenom, mreža otkriva koji su obrasci najbolji u izračunavanju rezultata. Zatim ih usvaja kao zadane postavke, oponašajući proces učenja u ljudskom mozgu. Neuronska mreža se naziva "dubokom" ako posjeduje više slojeva neurona.

Problem nije u receptu

Problem je što su te duboke neuronske mreže nestabilne, o tome postoji niz dokaza. Promjena samo jednog piksela na slici može natjerati UI da pomisli kako je konj žaba ili da potpuno pogrešno dijagnosticira rak u 100 posto slučajeva.

Postoji niz dokaza da su duboke neuronske mreže nestabilne
Postoji niz dokaza da su duboke neuronske mreže nestabilne

Nova studija, objavljena u Proceedings of the National Academy of Sciences, otkriva da ne postoji algoritam koji će uspješno izračunati stabilne, točne neuronske mreže. Zvuči zbunjujuće, kao da netko kaže da neka vrsta kolača možda postoji, ali ne i recept po kojem se on radi. A problem nije u receptu, kažu istraživači, nego u alatima. 

Nova studija otkriva da algoritam možda neće moći izračunati stabilnu, točnu neuronsku mrežu za određeni problem bez obzira na količinu i točnost prikupljenih podataka.

Ovo je slično argumentu oca teoretičke računarske znanosti i umjetne inteligencije Alana Turinga da postoje problemi koje računalo možda neće riješiti bez obzira na računalnu snagu i vrijeme rada, objašnjavaju istraživači.

Ograničeni scenariji

Ova nova otkrića ne sugeriraju da su sve neuronske mreže potpuno manjkave, nego da se mogu pokazati stabilnima i točnima samo u ograničenim scenarijima. Ključno je pitanje kako pronaći te slučajeve. Istraživači su otkrili da često postoji kompromis između stabilnosti i točnosti u neuronskim mrežama. 

Alan Turing govorio je kako postoje problemi koje računalo možda neće riješiti bez obzira na računalnu snagu i vrijeme rada
Alan Turing govorio je kako postoje problemi koje računalo možda neće riješiti bez obzira na računalnu snagu i vrijeme rada

"Problem je u tome što želimo i stabilnost i točnost. U praksi ćete možda morati žrtvovati određenu točnost kako bi osigurali stabilnost", upozoravaju istraživači koji su u sklopu studije razvili "brzo iterativnu mrežu s ponovnim pokretanjem" (fast iterative restarted networks, FIRENETs). Ove neuronske mreže mogu ponuditi spoj stabilnosti i točnosti kada su u pitanju zadaci kao što je analiza medicinskih slika.

Nova otkrića impliciraju postojanje teorije klasifikacije koja opisuje koje se stabilne neuronske mreže sa zadanom točnošću mogu izračunati algoritmom. "Ako je nemoguće ispeći tortu, želimo znati koliko se možemo približiti vrsti kolača koju želimo", zaključuju istraživači, držeći se analogije s kolačima.

📢 Besplatna dostava

TOP!

iPad 9th

10.2", WiFi, Bluetooth, GPS, 64GB. Idealan je za posao ili zabavu.

3.249 kn Kupi


Multiroom zvučnik

DENON Home 250

Internet radio, glazbeni streaming, Hi-Res audio reprodukcija, Heos aplikacija, Amazon Alexa, Airplay 2, Bluetooth, podrška za subwoofere s ugrađenim HEOS-om.

2.899 kn Kupi

Stand-mount zvučnici

DALI OBERON 3

Bass Reflex, 7" drvena vlakna woofera, 29 mm mekana kupola visokotonca, 47 - 26,000 Hz, 87 dB, 6 ohma, 108 dB, 25 - 150 W.

3.599 kn Kupi