Dronovi protiv vjetra - rješenje je neuronska mreža

Da bi bila istinska korisna, autonomna leteća vozila morat će naučiti navigirati u stvarnim vremenskim uvjetima i uvjetima vjetra

Mladen Smrekar subota, 7. svibnja 2022. u 17:20

Dronovi trenutačno lete u kontroliranim uvjetima, bez vjetra, ili njima upravljaju ljudi pomoću daljinskih upravljača. Naučeni su letjeti u formaciji na otvorenom nebu, ali ti se letovi obično izvode u idealnim uvjetima i okolnostima. Međutim, kako bi samostalno obavljali nužne, ali svakodnevne zadatke, poput dostave paketa ili zračnog prijevoza ozlijeđenih vozača iz prometne nesreće, dronovi se moraju moći prilagoditi vjetru u stvarnom vremenu.

Metoda dubokog učenja

Inženjeri Caltecha razvili su Neural-Fly, metodu dubokog učenja koja može pomoći dronovima da se nose s novim i nepoznatim uvjetima vjetra u stvarnom vremenu ažuriranjem nekoliko ključnih parametara.

Metoda je opisana u studiji koju objavljuje Science Robotics i testirana u Caltechovom Centru za autonomne sustave i tehnologije (CAST), gdje je podvrgnut utjecajima više od 1200 malih kompjuterski kontroliranih ventilatora.

"Problem je u tome što se izravan i specifičan učinak različitih uvjeta vjetra na dinamiku, performanse i stabilnost zrakoplova ne može točno okarakterizirati kao jednostavan matematički model", kažu istraživači.

Neural-Fly je podvrgnut utjecajima više od 1200 malih kompjuterski kontroliranih ventilatora
Neural-Fly je podvrgnut utjecajima više od 1200 malih kompjuterski kontroliranih ventilatora

Umjesto da kvalificiraju i kvantificiraju svaki učinak turbulentnih i nepredvidivih uvjeta vjetra u zračnom prometu, oni su koristili kombinirani pristup dubokog učenja i prilagodljive kontrole koji letjelici omogućuje da uči iz prethodnih iskustava i u hodu se prilagođava novim uvjetima.

Strategija razdvajanja

Neural-Fly koristi takozvanu strategiju razdvajanja, kroz koju se samo nekoliko parametara neuronske mreže mora ažurirati u stvarnom vremenu. To se postiže novim algoritmom meta-učenja, koji unaprijed trenira neuronsku mrežu tako da se ažuriraju samo ključni parametri.

Neural-Fly je implementiran u ugrađeno Raspberry Pi 4 računalo koje je veličine kreditne kartice i košta oko 20 dolara
Neural-Fly je implementiran u ugrađeno Raspberry Pi 4 računalo koje je veličine kreditne kartice i košta oko 20 dolara

Nakon što dobiju podatke o letenju od samo 12 minuta, autonomni dronovi opremljeni Neural-Flyjem uče kako reagirati na jak vjetar kako bi značajno poboljšali performanse.


Stopa pogreške je 2,5 do četiri puta manja u usporedbi s dronovima opremljenim sličnim adaptivnim algoritmima upravljanja koji identificiraju i reagiraju na aerodinamičke učinke, ali bez dubokih neuronskih mreža.


Inženjeri Caltecha razvili su metodu dubokog učenja koja dronovima pomaže da se nose s novim i nepoznatim uvjetima u stvarnom vremenu
Inženjeri Caltecha razvili su metodu dubokog učenja koja dronovima pomaže da se nose s novim i nepoznatim uvjetima u stvarnom vremenu

Reagiranje u hodu

Neural-Fly se temelji na ranijim sustavima Neural-Lander i Neural-Swarm. Neural-Lander je također koristio metodu dubokog učenja kako bi pratio položaj i brzinu drona pri slijetanju te modificirao njegovu putanju slijetanja i brzinu rotora kako bi kompenzirao povratno ispiranje rotora od tla i postigao najglađe moguće slijetanje; Neural-Swarm je naučio dronove da lete autonomno u neposrednoj blizini drugih dronova.

Neural-Fly uči u stvarnom vremenu pa na promjene vjetra može reagirati u hodu i ne zahtijeva naknadno podešavanje. Uz to, podaci o letu prikupljeni jednim dronom mogu prenijeti na drugi, stvarajući bazu znanja za autonomne letjelice.

📢 Besplatna dostava

TOP!

iPad 9th

10.2", WiFi, Bluetooth, GPS, 64GB. Idealan je za posao ili zabavu.

3.249 kn Kupi


Multiroom zvučnik

DENON Home 250

Internet radio, glazbeni streaming, Hi-Res audio reprodukcija, Heos aplikacija, Amazon Alexa, Airplay 2, Bluetooth, podrška za subwoofere s ugrađenim HEOS-om.

2.899 kn Kupi

Stand-mount zvučnici

DALI OBERON 3

Bass Reflex, 7" drvena vlakna woofera, 29 mm mekana kupola visokotonca, 47 - 26,000 Hz, 87 dB, 6 ohma, 108 dB, 25 - 150 W.

3.599 kn Kupi